Metrics on doubles as an inverse semigroup II

نویسندگان

چکیده

We have shown recently that, given a metric space X, the coarse equivalence classes of metrics on two copies X form an inverse semigroup M(X). Here we give description set E(M(X)) idempotents this and its Stone dual Xˆ. also construct ?-additive measures Xˆ from finitely additive probability that vanish bounded subsets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Locally Inverse Semigroup Algebras

Let R be a commutative ring and S a finite locally inverse semigroup. It is proved that the semigroup algebra R S is isomorphic to the direct product of Munn algebras M R GJ , mJ , nJ ;PJ with J ∈ S/J, where mJ is the number of R-classes in J , nJ the number of L-classes in J , and GJ a maximum subgroup of J . As applications, we obtain the sufficient and necessary conditions for the semigroup ...

متن کامل

Arens regularity of inverse semigroup algebras‎

‎We present a characterization of Arens regular semigroup algebras‎ ‎$ell^1(S)$‎, ‎for a large class of semigroups‎. ‎Mainly‎, ‎we show that‎ ‎if the set of idempotents of an inverse semigroup $S$ is finite‎, ‎then $ell^1(S)$ is Arens regular if and only if $S$ is finite‎.

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

Fiat categorification of the symmetric inverse semigroup and the semigroup

Starting from the symmetric group Sn , we construct two fiat 2-categories. One of them can be viewed as the fiat “extension” of the natural 2-category associated with the symmetric inverse semigroup (considered as an ordered semigroup with respect to the natural order). This 2-category provides a fiat categorification for the integral semigroup algebra of the symmetric inverse semigroup. The ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2020.124821